13 research outputs found

    Data Stream Operations as First-Class Entities in Palladio

    Get PDF

    Mapping Data Flow Models to the Palladio Component Model

    Get PDF

    Detecting Violations of Access Control and Information Flow Policies in Data Flow Diagrams

    Get PDF
    The security of software-intensive systems is frequently attacked. High fines or loss in reputation are potential consequences of not maintaining confidentiality, which is an important security objective. Detecting confidentiality issues in early software designs enables cost-efficient fixes. A Data Flow Diagram (DFD) is a modeling notation, which focuses on essential, functional aspects of such early software designs. Existing confidentiality analyses on DFDs support either information flow control or access control, which are the most common confidentiality mechanisms. Combining both mechanisms can be beneficial but existing DFD analyses do not support this. This lack of expressiveness requires designers to switch modeling languages to consider both mechanisms, which can lead to inconsistencies. In this article, we present an extended DFD syntax that supports modeling both, information flow and access control, in the same language. This improves expressiveness compared to related work and avoids inconsistencies. We define the semantics of extended DFDs by clauses in first-order logic. A logic program made of these clauses enables the automated detection of confidentiality violations by querying it. We evaluate the expressiveness of the syntax in a case study. We attempt to model nine information flow cases and six access control cases. We successfully modeled fourteen out of these fifteen cases, which indicates good expressiveness. We evaluate the reusability of models when switching confidentiality mechanisms by comparing the cases that share the same system design, which are three pairs of cases. We successfully show improved reusability compared to the state of the art. We evaluated the accuracy of confidentiality analyses by executing them for the fourteen cases that we could model. We experienced good accuracy

    Detecting Violations of Access Control and Information Flow Policies in Data Flow Diagrams

    Get PDF
    The security of software-intensive systems is frequently attacked. High fines or loss in reputation are potential consequences of not maintaining confidentiality, which is an important security objective. Detecting confidentiality issues in early software designs enables cost-efficient fixes. A Data Flow Diagram (DFD) is a modeling notation, which focuses on essential, functional aspects of such early software designs. Existing confidentiality analyses on DFDs support either information flow control or access control, which are the most common confidentiality mechanisms. Combining both mechanisms can be beneficial but existing DFD analyses do not support this. This lack of expressiveness requires designers to switch modeling languages to consider both mechanisms, which can lead to inconsistencies. In this article, we present an extended DFD syntax that supports modeling both, information flow and access control, in the same language. This improves expressiveness compared to related work and avoids inconsistencies. We define the semantics of extended DFDs by clauses in first-order logic. A logic program made of these clauses enables the automated detection of confidentiality violations by querying it. We evaluate the expressiveness of the syntax in a case study. We attempt to model nine information flow cases and six access control cases. We successfully modeled fourteen out of these fifteen cases, which indicates good expressiveness. We evaluate the reusability of models when switching confidentiality mechanisms by comparing the cases that share the same system design, which are three pairs of cases. We successfully show improved reusability compared to the state of the art. We evaluated the accuracy of confidentiality analyses by executing them for the fourteen cases that we could model. We experienced good accuracy

    A Cross-Disciplinary Language for Change Propagation Rules

    Get PDF

    Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models

    Get PDF
    The many configuration options of modern applications make it difficult for users to select a performance-optimal configuration. Performance models help users in understanding system performance and choosing a fast configuration. Existing performance modeling approaches for applications and configurable systems either require a full-factorial experiment design or a sampling design based on heuristics. This results in high costs for achieving accurate models. Furthermore, they require repeated execution of experiments to account for measurement noise. We propose Performance-Detective, a novel code analysis tool that deduces insights on the interactions of program parameters. We use the insights to derive the smallest necessary experiment design and avoiding repetitions of measurements when possible, significantly lowering the cost of performance modeling. We evaluate Performance-Detective using two case studies where we reduce the number of measurements from up to 3125 to only 25, decreasing cost to only 2.9% of the previously needed core hours, while maintaining accuracy of the resulting model with 91.5% compared to 93.8% using all 3125 measurements
    corecore